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Overview

In the Euclidean space R2 and R3 there are two concepts, viz., length (or
distance) and angle which have no analogues over a general field.

Fortunately there is a single concept usually known as inner product or
scalar product which covers both the concepts of length and angle.

We discuss the concept of orthogonality and some applications.
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Scalar product of vectors in R2

Let a = (a1, a2) and b = (b1, b2)
be vectors in R2 represented by the
points A and B as in figure. Then the
scalar product of a and b is defined
to be

〈a, b〉 = ‖a‖ ‖b‖ cos θ

where ‖a‖ is the length of OA, ‖b‖ is
the length of OB and θ is the angle
between OA and OB.
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Length, distance, angle : in terms of the inner product

Scalar product gives the following concepts of length, distance and angle.

1 Length of a vector: The length OA can
be defined in terms of the scalar product
since

OA2 = ‖a‖2 = 〈a, a〉.
2 Distance between vectors: If OABC is a

parallelogram, the distance
AB = OC =

√
〈b − a, b − a〉 since

C = b − a.

3 The angle θ can be obtained as

θ = cos−1

(
〈a, b〉√
〈a, a〉.〈b, b〉

)
.
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The above concepts and results have obvious analogues in R3. The
concept of angle between vectors is generalized to “vector space with an
inner product” (called inner product space).

Motivated by the scalar product (dot product) on R2 we now give the
axiomatic definition of inner product on a vector space over K, where K is
either R or C.

Definition

Let X be a vector space over K. A function 〈., .〉 : X × X → K is an inner
product on X if for any x , y , z ∈ X and α, β ∈ K the following conditions
are satisfied:

1 〈αx + βy , z〉 = α〈x , z〉+ β〈y , z〉 (linear with respect to first variable)

2 〈x , x〉 ≥ 0 (positivity) and 〈x , x〉 = 0 ⇐⇒ x = 0

3 〈x , y〉 = 〈y , x〉. (conjugate symmetry, often known as Hermitian
symmetry) (the bar denotes the complex conjugate).
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One does not extend inner product to vector spaces over a general field
mainly because 〈x , x〉 ≥ 0 has no meaning in a general field.

a vector space with an inner product an inner product space
a real inner product space a Euclidean space
a complex inner product space a unitary space
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Properties of an inner product

1 The restriction of an inner product to a subspace is an inner product.
2 In any inner product space, we have

〈x , αy + βz〉 = α〈x , y〉+ β〈x , z〉.
〈0, y〉 = 〈x , 0〉 = 0.

3 When the second argument is held fixed, inner product is linear in
the first argument. Similarly, when the first argument is held fixed,
inner product is conjugate-linear in the second argument.
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Concept of length : Norm

Inner product combines the concepts of length and angle. We shall
discuss the first concept, length.

Definition

A norm on a (real or complex) vector space V is a map x 7→ ‖x‖ from V
to R satisfying the following three conditions:

1 ‖x‖ ≥ 0 ; x = 0 if ‖x‖ = 0

2 ‖αx‖ = |α|.‖x‖
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖.

A vector space together with a norm on it is called a normed vector
space or normed linear space or simply normed space.
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Each inner product induces a norm, defined by ‖x‖ =
√
〈x , x〉.

Theorem

Every inner product space is a normed space.

In any inner-product space, we have the following

1 length of the vector x ,

‖x‖ =
√
〈x , x〉.

2 distance of two vectors x and y ,

‖x − y‖ =
√
〈x − y , x − y〉.
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Another concept : Angle

The angle between two nonzero vectors x and y is defined by the formula

cos θ =
〈x , y〉
‖x‖ · ‖y‖

.

It is understood that the angle θ should be chosen in the closed interval
[0, π].

Inner product combines the concepts of length and angle. We shall
discuss an important special case of the second concept, viz., the
angle between two vectors being 90◦.
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Law of Cosines : Verification in R2

We call upon the Law of Cosines from trigonometry, which asserts that
in a triangle having sides a, b, c, and opposing angles, A,B,C , the formula

c2 = a2 + b2 − 2ab cos θ

holds.

Create a triangle having sides x , y , and x − y . Then in the law of cosines
let C = θ, a = ‖x‖, b = ‖y‖, and c = ‖x − y‖. This produces the equation

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖ · ‖y‖ cos θ.
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Hence, we obtain

‖x‖2 − 2〈x , y〉+ ‖y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖ · ‖y‖ cos θ.

When this equation is simplified, we arrive at the equation

cos θ =
〈x , y〉
‖x‖ · ‖y‖

=
〈x , y〉√

〈x , x〉 ·
√
〈y , y〉

.

Theorem (Cauchy-Schwarz Inequality)

Let X be an inner product space. Then

|〈x , y〉|2 ≤ 〈x , x〉〈y , y〉 for all x , y ∈ X .

The equality occurs iff x and y are linearly dependent.
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Examples of Inner Product Spaces

1 The space Kn of ordered n-tuples (x1, x2, . . . , xn) of (real or complex)
scalars is an inner product space with respect to the inner product
(canonical inner product)

〈x , y〉 =
n∑

i=1

xiyi .

2 The space `2 of all sequences (xn)∞n=1 of (real or complex) scalars
such that

∑∞
n=1 |xn|2 <∞, is an inner product space with the inner

product defined by

〈x , y〉 =
∞∑
n=1

xnyn.

3 Fix any finite subset A of R with size ≥ n. Let V = Pn over R.

〈p, q〉 :=
∑
a∈A

p(a)q(a)

is an inner product on V .
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Examples of Inner Product Spaces

1 The space C [a, b] of all continuous scalar-valued functions on the
interval [a, b] is an inner product space with the inner product defined
by

〈f , g〉 =

∫ b

a
f (x)g(x)dx .

2 If h ∈ V is such that h(t) > 0 for all t ∈ [a, b],

〈f , g〉 =

∫ b

a
h(t)f (t) g(t) dt

is also an inner product.

3 〈A,B〉 = tr(B∗A) is an inner product on Cm×n.

4 Let V be the vector space of all real-valued random variables with
mean 0 and finite variance, defined on a fixed probability space. Let
F = R and define 〈x , y〉 to be the covariance between x and y .
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Exercises

1 Prove that the following

〈x , y〉 = yT x and 〈x , y〉 = x∗y

are not inner products on Cn.

2 In Cm×n, verify that

〈A,B〉 =
n∑

i=1

aiibii

is not an inner product.
What are all the axioms which are violated?

P. Sam Johnson (NITK) Inner Product and Orthogonality October 3, 2014 15 / 37



Inner product associated with a matrix

Let V be an inner product space over K and B = {u1, u2, . . . , un} a basis
of V . Let α = (α1, α2, . . . , αn)T and β = (β1, β2, . . . , βn)T be the
coordinate vectors of x and y respectively with respect to B and let
A = (aij), where aij = 〈uj , ui 〉. Then

〈x , y〉 :=
〈∑

αiui ,
∑

βjuj

〉
=
∑∑

βjajiαi = β∗Aα. (1)

The matrix A will satisfy the following conditions:

1 A = A∗

2 α∗Aα ≥ 0 for all α ∈ Kn,

3 if α∗Aα = 0 then α = 0.
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Matrix associated with an inner product

Conversely, if A is a matrix satisfying the above three conditions, then 〈., .〉
defined by (1) is an inner product on V .

Suppose A = B∗B, where B is a matrix with n columns and rank n. Then

〈x , y〉 = y∗B∗Bx

is an inner product because

〈y , x〉 = x∗B∗By = (x∗B∗By)∗ = y∗B∗Bx = 〈x , y〉.
〈x , x〉 = (Bx)∗(Bx) ≥ 0.

If 〈x , x〉 = 0 then Bx = 0 and so x = 0.

We shall later show that any matrix A satisfying the above three
conditions, can be written as B∗B for some non-singular B.
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Orthogonality

Let V be an inner product space, x , y ∈ V . Let A,B be subsets of V .

〈x , y〉 = 0 (we write x ⊥ y) x and y are orthogonal
to each other

x ⊥ y for every pair of distinct vectors
x , y in A

A is orthogonal

A is orthogonal and every vector in A has
norm 1

A is orthonormal

every vector in A is orthogonal to every
vector in B

A is orthogonal to B

Properties of Orthogonality

x ⊥ y ⇐⇒ y ⊥ x .

0 ⊥ x for all x .

x ⊥ x ⇐⇒ x = 0.

if x ⊥ y , y ⊥ z , then
x ⊥ (αy + βz) for any α, β ∈ K.

The empty set is orthonormal
(in a vacuous sense).
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Exercises

A set of vectors is orthogonal iff its elements are pair-wise orthogonal. Is
the corresponding statement for linear independence true?.

Linear independence is a property of the entire set whereas orthogonality is
a property of pairs.

Exercises

Any orthogonal set A not containing the null vector is linearly
independent.

Any orthonormal set is linearly independent.

If the subspaces S1, S2, . . . ,Sk are orthogonal to one another then
S1 + S2 + · · ·+ Sk is direct.
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Orthogonal Complement

Definition

The orthogonal complement of a set S in an inner-product space is the
set

{x : x⊥s for all s ∈ S}.

The orthogonal complement of S is denoted by S⊥.

Theorem

In an inner product space, the orthogonal complement of any subset is a
subspace.

Theorem

In an inner product space, the orthogonal complement of a set is the same
as the orthogonal complement of its span.
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Theorem

If M is a subspace in an n-dimensional inner product space, then

dim(M) + dim(M⊥) = n.

Theorem

Let M and N be subsets of an inner product space. If M ⊆ N, then
N⊥ ⊆ M⊥.

Theorem

If M is a finite dimensional subspace in an inner product space V , then V
is the direct sum of M and M⊥:

V = M + M⊥ and M ∩M⊥ = {0}.

Moreover, M = M⊥⊥.
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Pythagoras theorem

In a real inner product space, if x ⊥ y , then

‖x + y‖2 = ‖x‖2 + ‖y‖2.

The converse is true for real inner product space but not for complex inner
product space.

More generally, ∥∥∥ k∑
i=1

xi

∥∥∥2 =
k∑

i=1

‖xi‖2

if {x1, x2, . . . , xk} is orthogonal. The converse is not true for both real and
complex inner product spaces.
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System corresponding to orthonormal basis

Definition

Let S be a subspace of an inner product space. We say that B is an
orthogonal basis (resp. an orthonormal basis) of S if B is a basis of S
and B is an orthonormal (resp. an orthonormal) set.

We have seen that a basis corre-
sponds to a coordinate system.

An orthonormal basis corresponds
to a system of rectangular coor-
dinates where the reference point
on each axis is at unit distance
from the origin.
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For a given orthonormal basis, finding the coordinates with respect to such
a coordinate system is easy as shown in the following.

Theorem

Let B = {x1, x2, . . . , xn} be an orthonormal basis of an inner product
space V . Then for any x ∈ V , we have

x =
n∑

j=1

αjxj , where αj = 〈x , xj〉.
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Exercises

Let x1, x2, . . . , xk form an orthonormal set.

1 Show that ‖
∑k

i=1 αixi‖2 =
∑k

i=1 ‖αi‖2.
2 If z is the residual of x on {x1, x2, . . . , xk}, show that

‖z‖2 = ‖x‖2 −
∥∥∥ k∑

i=1

〈x , xi 〉xi
∥∥∥2 = ‖x‖2 −

k∑
i=1

|〈x , xi 〉|2.

3 Bessel’s inequality:

‖x‖2 ≥
k∑

i=1

|〈x , xi 〉|2

for any x . Show also that equality holds iff x ∈ Sp({x1, x2, . . . , xk}).
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Exercises

Let B = {x1, x2, . . . , xk} be an orthonormal set in a finite-dimensional
inner product space V . Show that the following statements are equivalent:

1 B is an orthonormal basis (maximal),

2 〈x , xi 〉 = 0 for i = 1, 2, . . . , k ⇒ x = 0,

3 B generates V ,

4 if x ∈ V then x =
∑k

i=1〈x , xi 〉xi ,
5 if x , y ∈ V then 〈x , y〉 =

∑k
i=1〈x , xi 〉.〈xi , y〉,

6 if x ∈ V then ‖x‖2 =
∑k

i=1 |〈x , xi 〉|2.
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Orthogonal Projection

One vector x can be projected orthogonally onto another vector y ,
provided that y is not zero.

The idea is that the projection of x onto y should be a scalar multiple of
y , say αy , such that x − αy is orthogonal to y .

What is the correct value of α?

Theorem

In any inner-product space, the orthogonal projection of a vector x onto a
nonzero vector y is the point

p =
〈x , y〉
〈y , y〉

y .

It has the property that x − p is orthogonal to y . Thus, x is split into an
orthogonal pair of vectors in the equation x = p + (x − p).
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Construction of orthogonal projection matrix

Notice that our concept of projecting x onto y does not depend on the
magnitude of the vector y . Actually the formula can be remembered more
easily as

p = 〈x , y〉v

where v is the normalized y ; that is, y/‖y‖.

The calculation of an orthogonal projection can be carried out in
several different ways. For example, we can begin with the point z that is
to be projected and the matrix U whose columns are the vectors ui .

The point p that we seek is a linear combination of the columns of U and
is therefore of the form

p = Uc

for some unknown vector c in Rn.
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The orthogonality condition is that z − p should be orthogonal to all the
columns of U, or in other terms,

(z − p)TU = 0

Since p = Uc, this last equation becomes

(z − Uc)TU = 0

UT (z − Uc) = 0

UTUc = UT z .

We shall see later how a well-chosen basis of W will lead to UTU = I .

In this case we obtain c = UT z .
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Suppose we are working in the space Rn, and we have an orthonormal set
of n vectors, u1, u2, . . . , un. Put them into a matrix U as columns.

The resulting matrix is square, and this property is crucial. The
orthonormality now gives us the equation UTU = I . Such a matrix U is
said to be orthogonal.

It is obviously invertible as UT is its inverse. Since U is square, UUT = I ,
that the rows of U also form an orthonormal set of vectors! This is an
impressive bit of magic.

Definition

A real matrix U is orthogonal if UUT = UTU = I .
A complex matrix U is unitary if UUH = UHU = I .
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Theorem

Let {u1, u2, . . . , un} be an orthonormal basis for a subspace U in an
inner-product space. The orthogonal projection of any x onto U is the
point

p =
n∑

i=1

〈x , ui 〉ui .

Theorem

In order that a vector be orthogonal to a subspace (in an inner-product
space), it is sufficient that the vector be orthogonal to each member of a
set that spans the subspace.
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Exercises

1 Let z be a fixed nonnull vector in the plane. What is the locus of the
point x such that 〈x , z〉 = 0? What happens if 0 is replaced by a
non-zero scalars?

2 If x1, x2, y1, y2 are real numbers, show that

(x1x2 + y1y2)2 ≤ (x2
1 + y2

1 )(x2
2 + y2

2 ).

Hence deduce that PQ + QR ≥ PR for any three points P,Q and R
in the plane.

3 Suppose A = {x1, x2, . . . , xk} be an orthogonal set (not a basis) of
non-null vectors in V . Then for any x ∈ V , we call

z := x −
k∑

j=1

〈x , xj〉
〈xj , xj〉

xj

the residual of x with respect to A. Prove that the residual z is
orthogonal to each xi .
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Application : Work and Forces

Let the vector f be the force exerted on an object, let the vector d be the
displacement caused by the force, and let θ be the angle between f and d .

For example, suppose we are pulling a heavy load on a dolly with a
constant force so that it moves horizontally along the ground.

The work done in moving the dolly through a distance d is given by the
distance moved multiplied by the magnitude of the component of the force
in the direction of motion.
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Application : Work and Forces

The component of f in the direction d is

‖f ‖ cos θ.

By the definition, the work accomplished is

W = ‖f ‖ · ‖d‖ cos θ = 〈f , d〉.
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Application : Collision

The law of cosines can be applied to determine the final location of a ball
after a glancing collision with a wall, as shown in the following figure.

Let u = (u1, u2) be the initial position, v = (v1, v2) be the final position,
and u − v be the change in position as a result of the collision. From the
Law of Cosines, it follows that the magnitude of the change in position is:

‖u − v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖ · ‖v‖ cosϕ.
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Application : Collision

From the expression

‖u − v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖ · ‖v‖ cosϕ,

we can obtain
〈u, v〉 = ‖u‖ · ‖v‖ cosϕ

which gives a connection between the inner product of the vectors u and v
and the angle ϕ between them.
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